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TWO-PHASE FILTRATION IN MIXED-WETTABLE POROUS MEDIA 

A. V. Domanskii and V. I. Pen'kovskii UDC 532.546 

The pressure difference 

p-p1=~, (0.i) 

called the "capillary pressure at the phase boundary," is the governingrelation which closes 
the standard [i] system of filtration equations for immiscible incompressible fluids. This 
system is composed of the equations of motion (generalized Darcy's law) 

v = -~(~@mx, vl = -kd1~)@dax (0.2) 

and the mass conservation law 

mOgat + a~ax = O, --madat + av/ax = O. ( 0 . 3 )  

Here, p is the pressure in the fluid (oil, for example), which occupies the fraction s of 
the pore space; s I = 1 - s is the saturation of the second fluid (water), with a pressure Pl; 
k and k I are the total permeabilities of the medium, referred to the viscosities, at s = 1 
and s = 0, respectively; f and fl are the relative ("phase") permeabilities; v and v I are 
the rates of filtration of the fluids; m is porosity; x is a coordinate; t is time. 

The capillary pressure Pc = Pc(s) is determined experimentally under static conditions 
and is assigned in the form of a fixed function of saturation s. In particular, the medium 
is assumed to be hydrophilic at Pc ~ 0 and hydrophobic at Pc ~ 0. However, the assumption 
that the sign of Pc in (0.i) is fixed is not always valid in problems of oil-field mechanics, 
since the problem of the wettability of the rocks which make up the oil-bearing strata cannot 
always be solved unambiguously [2, 3]. 

It was suggested in [4] that there are three main classes of porous media with regard to 
the case of two immiscible fluids saturating these media: i) wettable (Pc ~ 0); 2) unwettable 
(Pc & 0); 3) intermediate-wettable or "mixed-wettable" [5]. A fluid-fluid-porous-medium 
system of the third type is characterized by a change in the sign of the function Pc. 

As is known [6], the wettability of a system under static conditions is determined by 
the contact angle 8 from the Young equilibrium equation 

c o s O =  (71 - -  ~)/?1.2, (0.4) 

where Yi (i = i, 2) are the specific free energies of the interfaces between the skeleton 
and each of the fluids; Yi,2 is the specific free energy of the interface between the fluids 
(surface tension). If 71 > Y2, then the angle 8 is acute, and fluid 2 wets the solid more 
readily than fluid I. When Xl = ~2, cos8 z 0, the fluids wet the solid equally well. The 
relationship between the values of 7i may change over time even under static conditions 
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("meniscus aging" effect). Significantly larger changes in the specific free energies are 
seen during motion [6]. Thus, the capillary pressure which figures in governing relation 
(0.i) should be regarded as a dynamic characteristic of the fluid-fluid-porous-medium sys- 
tem. 

Here, we propose one possible variant of assigning the dependence of dynamic capillary 
pressure on saturation and we look at an example of the flow of two fluids in a mixed-wett- 
able porous medium. The results of calculations performed by the proposed algorithm are 
compared with experimental data. 

i. Capillary Pressure in Mixed-Wettable Porous Media. We will first examine Poiseuille 
flow in a thin circular capillary tube of the radius r c. The equation of the line of the 
particles z = z(r, t) at the initial moment of time t = 0 perpendicular to the z axis of the 
tube has the form z(r, t) = <v>t(l - 2r2/r~) in the coordinate system moving the mean velocity 
<v>. Calculating the mean curvature <K> of this line, we obtain 

r c 

~ c  

from which it is evident that the radius of mean curvature of the line of the particles 
rapidly approaches the radius of the tube r c with an increase in the dimensionless displace- 
ment s = <v>t/r c. 

On the other hand, let 71 = 72 in Eq. (0.4) and let there be an interface (meniscus) S 
between the two immiscible fluids moving in the tube at the prescribed mean velocity <v> = 
const. Let Ui be viscosity, Pi be the densities of the fluids (i = I, -2), ~P7 be the frac- 
tion of the capillary pressure jump acting on the first fluid, and -(i - a)p7 be the fraction 
of pressure acting on the second fluid (0 < ~ < i, while the total pressure jump ~P7 - 
[-(i - ~)pT] = p7 is equal to the capillary pressure). The pressure in the first fluid, to 
the left of the meniscus, is equal to Ps + ~PT" To the right, in the second fluid, p - 
(i - ~)P7 (Ps is the hydrodynamic pressure in the neighborhood of the meniscus). In a co- 
ordinate system moving at the same velocity as the meniscus <v>, we distinguish two cross 
sections S I and S=. These sections are located sufficiently far from the meniscus. We take 
the below equation, expressing the theorem of the momentum change [7], and we apply it to 
the volumes of the fluids ~i bounded by the lateral surfaces S i, the sections Si, and the 
surface of the meniscus S 

( 1 . 1 )  

Here, Fzi is the projection of the principal vector of the external forces applied to these 
volumes; Vzi is the projection of the relative velocities on the z axis, which is directed 
along the axis of the capillary tube; Vni is the projection of the velocities on a normal 
to the surfaces. The flow of the fluids is close to Poiseuille flow outside a certain neigh- 
borhood of the meniscus, so it is natural to assume that the forces of viscous friction act- 
ing over the lateral surfaces S i are balanced by the gradients of the hydrodynamic pressures 
Ps - Pl and P2 - Ps (Pi is the pressure in the section Si). 

Noting that Vni = 0 on S and S i, that Vzi = v - <v> = <v>(l - 2r2/r~) on Si, and that 
the projection of the principal vector of the force corresponding to the jump in capillary 
pressure p~ is equal to 2~rc~l, 2 cos 0 (0 is the angle which is formed by the meniscus with 
the surface of the tube), we use Eq. (i.i) to obtain the relation -~plr~<v>2/3 = -a2~rc~1, 2 • 
cos 0, ~02r~<v>2/3 = (i - ~)2~rc~i, 2cos0. Excluding ~ = Pl/(Pl + P2), we find the radius 
R c = rc/cos 0 of curvature of the meniscus in the form 

Rc = 671./ [< v} 2(Pl + P2)]. ( 1 . 2 )  

As migh t  be e x p e c t e d ,  t h e  k i n e m a t i c  a c t i o n  o f  t h e  p a r t i c l e s  o f  t h e  f l u i d s  on t h e  s u r -  
f a c e  o f  t h e  m e n i s c u s  i s  p r o p o r t i o n a l  t o  t h e  s q u a r e  o f  t h e  mean v e l o c i t y .  S i n c e  f i l t r a t i o n  
f l o w s  a r e  c l a s s e d  as " c r e e p i n g "  f l ows  and a r e  c h a r a c t e r i z e d  by v e l o c i t i e s  v which  a r e  2-4  
t i m e s  l e s s  t h a n  t h e  v a l u e  g i v e n  by Eq. ( 1 . 2 )  f o r  <v> = <V>ma x = / 6 7 1 , 2 / ( r c ( P l  + P 2 ) ) ,  i t  can  
be assumed t h a t ,  in  a p o r o u s  medium, t h e  c u r v a t u r e  o f  t h e  m e n i s c u s  i s  i n d e p e n d e n t  o f  t h e  
f i l t r a t i o n  v e l o c i t y  and i s  d e t e r m i n e d  m a i n l y  by t h e  g e o m e t r y  o f  t h e  p o r e  s p a c e  and t h e  
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physicochemical reactions between the fluids and the skeleton of the medium during their 
mutual displacement. 

Figure i shows a water-filled quartz capillary tube with an occlusion of crude oil of 
the radius r c = 0.3"10 -3 m. The arrows denote the directions of movements of the oil. It is 
evident that the curvature of the meniscus changes in relation to the direction of motion. 

When the interface between the fluids is displaced, one fluid is separated from the 
solid surface (cohesion) while the other is simultaneously attached to it (adhesion). The 
difference between the energies expended on detachment and attachment of the respective 
fluids should be compensated for by the work done in displacing the meniscus, i.e., the work 
done in overcoming capillary pressure. Since the energy of cohesion is greater than the 
energy of adhesion - at least for a rock-oil-water system - then the capillary pressure 
resulting from motion will prevent displacement from taking place. In other words, the 
water-filled pore channel will behave as if it were hydrophilic, while the oil-filled chan- 
nel will behave as though it were hydrophobic. This provides grounds for suggesting that, 
for mixed-wettable porous media, the sign of the function Pc in Eq. (0.i) coincides with the 
sign of the derivative @s/@t. Here, the hysteresis of capillary pressure is greater here 
than in wettable media such as in systems of the type medium-liquid-gas. However, the prob- 
lem of constructing primary and secondary curves of the developed surfaces is simpler, since 
there is a priority for filling of the pore channels: the displacing ("nonwetting") fluid, 
moving under the influence of hydrodynamic pressure along the paths of least resistance, 
tends to penetrate the relatively coarse pores. A similar priority for filling of pores by 
gas (air) in the drainage cycle exists in wettable media - for which experimental methods of 
determining static capillary pressure Pk(S) are well-established. 

We will assume that the primary curve of the hysteresis of capillary pressure 

pc  = x~(s )  ~ ( x ,  o) = o,  ~ o t  > o), ( 1 . 3 )  

where x>0, depends on the difference in the specific energies of adhesion of oil and cohe- 
sion of water on the surface of particles of the skeleton of the porous medium; ~) is a di- 
mensionless function analogous to the Leverett function. Then the second part of the primary 
curve of the hysteresis loop is represented in the form 

pc = - - •  ~(x, O) = t ,  Os/Ot < 0). (1.4) 

Here, ~i is a parameter determined by the difference in the specific energies of adhesion of 
water and cohesion of oil, while the functions ~i~) = ~i) = ~(i--s), since the order of the 
filling of pores with water in a hydrophobic medium is similar to the order of filling of 
pores with oil in a hydrophilic medium with the same structure. In a state of rest (v = v I = 
0), pressure is equalized in the fluids (Pc = 0). In accordance with this, if the displace- 
ment process continued from the state of rest beginning with the moment of time t = t o , then 
the capillary pressure developed as a result of motion will be the difference 

pc = x [ ~ ( s )  - -  ~(s~  st(z, to + O) > O, s t (z ,  to - -  O) > 0 

between the specific energies expended and already expended. Similarly, the secondary curves 
of the reserve process of "final displacement" will take the form 

p C - -  - *~ [ ~  (~,) - ,~ ( ~ D ] ,  ~, (*, to + o) > o,: 
st (z ,  to - -  o) > 0 (s o = s (z ,  to)). 
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In the case of a change in the sign of displacement, it follows from consideration of the 
"mutuality of the expended energies" that 

/ •  s , ( x , t  o + O ) > O ,  s , (x ,  t o - - O ) < O ,  
PC = (__ •  [9 (s) - -  ~(s~ st (x, t o + O) < O, st (x, t o - -  O) > O. 

If the forces of interaction between the skeleton of the medium and the water are greater, 
then ~>~i. When ~i= ~1(t) -+ 0 , spontaneous capillary impregnation of the medium with wa- 
ter may occur [8]. However, the change in the parameters ~ and ~I over time will evidently 
be of a diffusional character and will be related to the slow process of redistribution of 
"free sites" on the surface of particles of the medium. 

2. Numerical Solution. Experimental Data. Let the initial distribution of oil satura- 
tion 

0, O < x < x l ,  
s ~  t ,  x l < x < l  ( 2 . 1 )  

model a plugged bed of unit length into which water began to be pumped with a prescribed 
pressure gradient Ap at t > 0 over the section x = I. The boundary conditions of the dis- 
placement problem are: 

t > O ,  x = O: p = p :  = 0 ,  x = l : p :  = Ap, v = O .  ( 2 . 2 )  

In the unidimensional case with capillary pressure functions assigned in the form (1.3) or 
(1.4), system (0.1)-(0.3) reduces to a single equation for saturation 

mOs 0 ( Os ) O~ (2.3) at Ox a i ( s ) ~ + V ( t ) b ( s )  ~ O x .  

+ 
H e r e ,  a • = k k l l ] l R d p ~ / d s ;  p~  = •  pc = - -  • (s); b = kl f lR;  R ~--- (k] ~ k j l )  -1. 

We d e s i g n a t e  D -  = { O ~ x ~ < x l }  , D+ = { Z l ~ X < ~ t } .  The  b o u n d a r y  c o n d i t i o n s  o n  t h e  e x -  
t e r n a l  b o u n d a r i e s  ( 2 . 2 )  w i l l  t a k e  t h e  f o r m  

t > O, x = O : s  = O, x = l :  a+~/Ox ~ Vb = V. ( 2 . 4 )  

The compatibility conditions for the flows and phase pressure at the point x i with simul- 
taneous motion of the oil and water lead us to the relations 

(a+Os/Ox + Vb) I~=~1+0 = (a-~s/Ox + Vb) ]~=~1_0, ( 2 . 5 )  

s +=--s(x l + O ,  t) = 1, s-----s(x  i - O ;  t) = O. 

Until the oil displacement front reaches the point xl, at x = x I we have the equality 

(a-Os/Ox + Vb) lx=xl-o = O, s+ = Ii ( 2 . 6 )  

As the oil displacement front approaches the point xl, at the moment t o - 0 the pres- 
sure Pl in the water phase undergoes a discontinuity p1(xl + Ott o -- 0) -- pi(xl -- 0, t o --0)= • 

+ - o ,  to - o ) )  = • - o ,  t o -  o ) ) .  

We obtain the following functional relation from conditions (2.4)-(2.6) to determine V(t) 

V(t) = - -  (Ap - -  F(s-) + Fo(s(t  , t)))/Y(t), ( 2 . 7 )  

i 1 1 

0 s 0 

Thus, the initial problem consists of finding the solution of Eqs. (2.3) - where V(t) is 
found from Eq. (2.7) - in the regions D +, D- with boundary conditions (2.4), initial condi- 
tions (2.1), and compatibility conditions (2.5), (2.6). 

Existing methods of numerically solving problems of two-phase filtration in regions 
with permeability and saturation discontinuities (such as for "suspended" discontinuities) 
generally involve the use of explicit difference schemes [9, i0] or are based on "blurring" 
of these discontinuities [ii]. 

With allowance for the specifics of the problem formulated above, we chose to use an 
unconditionally stable implicit difference scheme involving "splitting" of the entire filtra- 
tion region into subregions which were uniform with respect to the physical properties of the 
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substances. 
mation of Eq. (2.3) was accomplished by the integrodifferential method [12]. 
marion has the form 

"~ h .~ 

�9 $ ~ ' + - 1  - -  4+1 ~+i [a+~:+~. i+i " u  
i + 1 / 2  = \ - - / ~ + 1 / 2  ~ ~ -  w U i + l / 2 .  

We then constructed a special iteration process. Finite-difference approxi- 
The approxi- 

(2.s) 

The order of approximation of Eq. (2.8) is O(T + h2). 

The boundary condition at x = i from (2.4) was also approximated with the second order 
with respect to h, similar to the case in [12]: 

m ~iI - ~ - '  rJ+i ~J+~ 
- ~N-~/2 ( 2 . 9 )  

h 

The values of s- were referred to the node immediately to the left of the node of the 
discontinuity x I = x I. Thus, the values of saturation to the left and right of the discon- 
tinuous point were placed in different storage cells of the computer. As a result, the com- 
patibility conditions (2.5), (2.6), written in difference form 

can be r e ga rde d  as t h e  boundary c o n d i t i o n s  f o r  t h e  " i n l e t "  boundary o f  t h e  r e g i o n  D-. Ap- 
p rox ima t ing  them wi th  s e c o n d - o r d e r  a c c u r a c y  wi th  r e s p e c t  to  h,  s i m i l a r  to  ( 2 . 9 ) ,  we f i n d  t h a t  

~-[-I ~j rf~+l aid-1 . 

m ~  - ' ~ - ~  = ~ + ~ / ~ -  ~ - ~ / ~  s ~ + ~  = 0; ( 2 . 1 0 )  
"c h ' 

S~q-1 " q ~ + l  , 
m 1-1--s}-I =- I-3/_____~ s{+l= t. (2.11) 

Initial condition (2.1) and boundary condition (2.4) are written in the form 

~ = 0 ,  O<~i<~I-- t ,  ~ = I ,  I < ~ i ~ N ;  ( 2 . 12 )  

= 0. (2 .13 )  

Thus, b o u n d a r y - v a l u e  problem ( 2 . 1 ) ,  ( 2 . 3 ) - ( 2 . 7 )  was so lved  by f i n i t e - d i f f e r e n c e  scheme ( 2 . 8 ) -  
( 2 . 1 3 ) .  S ince  t he  problem i s  n o n l i n e a r ,  we c a l c u l a t e d  s a t u r a t i o n  by t h e  i t e r a t i v e  method. 
The v a l u e s  of  t he  c o e f f i c i e n t s  of  t he  e q u a t i o n  and t he  f u n c t i o n a l  V( t )  were t aken  from the  
p r e v i o u s  i t e r a t i o n  [ t h e  i n t e g r a l s  in  ( 2 . 7 )  were c a l c u l a t e d  from the  t r a p e z o i d  f o r m u l a ] .  Here ,  
in  o r d e r  to  " s p l i t "  t he  problem,  t he  v a l u e  of  t he  f low on t he  r i g h t  oJ +l in  (2 .10)  was a l s o  
determined from the previous iteration. I+i/2 

We thus solved the same type of problem in each iteration for the regions D-, D + - the 
flow of the displacing phase is assigned at the inlet, while saturation is assigned at the 
outlet. It is clear from the foregoing that the algorithm is organized so that the problem 
can actually be solved by the method of three-point trial run. Here, the coefficients at the 
nodes Xl_l, x I are redefined. 

We used the following dependences of capillary pressure and relative permeability on 
saturation in the calculations: I~) = Ii(l'~s) = ~.5 ~(s) = ~l(l--s) = is/(O:85--s)) "'5, k/kl = 6.31, 
~=~l, Ap~ Ap/~=3, xl=0,5. The iteration was continued until satisfaction of the condi- 

tion max]s~+l--s~[<10 -3 (q is the number of the iteration). The time step < was chosen on 
i 

the conditions of convergence of the iterations with a specified accuracy and satisfaction of 
the material-balance condition to within 5%. 

Some of the results are shown in Fig. 2, where line 3 represents the distribution of 
saturation up to the moment the oil displacement front reaches the point x I. Line 2 shows 
the same at this moment, while line i shows the distribution at the next moment. 

Let us determine possible values of the physial parameters of the problem for a system 
composed of fine-grained sand, kerosine, and water. Tests conducted in a quartz capillary 
tube with the radius 0.3"10 -3 m show that the maximum (in the case of a receding meniscus) 
height of capillary rise of water in the tube h w = 4.9-10 -= m, which is evidence of nearly 
complete wettability of the inside surface of the tube (the surface tension of water Xw = 
73.10 -3 N/m). The height of capillary rise of the kerosine in the tube h k = 2.8"10 -2 m. At 
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the same time, the maximum height of the column of water supported by capillary forces with 
an overlying layer of kerosine of the thickness h k is hwk z 1.5"i0-2m. Using the Jurin-Lap- 
lace formula, for the given hwk we obtain Xwk cos 8wk z 22"10 -3 N/m (Twk is the surface ten- 
sion at the water-kerosine boundary and 0wk is the contact angle). Thus, the interfacial 
specific free energy in the capillary-water kerosine system is 22/73 = 0.3 of that developed in 
the capillary-water -air system. If we use the function pw(Sw) = 0.5[Sw/(0.85 - Sw)] ~ to 
approximate the empirical dependence of capillary pressure Pw on saturation s w with air for 
fine-grained sand of the porosity m = 0.34 and a filtration coefficient (for water) k I = 8.6 
m/day, then in (1.3) for a sand-kerosine-water system we can take ~ = 0.5"0.3 = 0.15 m, ~(s) = 
[s/(0.85 - s)] ~ (s is the saturation of the sand with kerosine), ~i = 0.i m. 

Figure 3 compares calculated results (curves 1 and 2) with empirical data (points) for 
the moment the water phase meets the boundary of the wetting properties of the specimen. The 
tests were conducted on a tube 1 m long and 0.02 m in diameter filled with fine-grained sand. 
The working fluids were a solution of sodium chloride with a concentration of 30 g/liter and 
kerosine. The gradient of the levels at the ends of the tube was 1 m water column. The 
saturation of the pore space with the water phase was determined by the electrical method. 
Curve 1 shows the results of calculations performed by the above-described numerical scheme, 
while curve 2 shows the approximate analytical solution of the problem obtained by the well- 
known method of successive substitution of steady states. The calculated results agree at 
least qualitatively with the experimental data. Since the more viscous fluid is displaced 
by the less viscous fluid in the subregion (0.5, i), there was some instability in the forma- 
tion of the saturation profile in the experiments. This caused the empirical scatter to be 
greater than in the region (0, 0.5). 
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